
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Application of Dynamic Programming to Solve Egg

Dropping Puzzle

Girvin Junod - 13519096

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13519096@std.stei.itb.ac.id

Abstract—The Egg Dropping Puzzle is a puzzle that involves

eggs and a building with multiple floors. The puzzle asks how

many acts of egg dropping is required to get a guaranteed answer

on which floors on the building are safe to drop an egg from. This

puzzle can be solved using dynamic programming. Dynamic

programming is a method to solve problems by breaking down the

solution to the problem into a group of stages so that the solution

to the problem is a series of interconnected decisions to the sub-

problems. Dynamic programming is as a method usually used to

solve optimization problems. This paper discusses the application

of dynamic programming to solve the egg dropping puzzle.

Keywords—dynamic programming; egg dropping puzzle; puzzle

I. INTRODUCTION

There are many types of puzzles. One type of puzzles is
known as logic puzzles. They are called logic puzzles because
they are derived from mathematical deductions. This means that
the solution to the puzzle requires using deductive reasoning to
reach a logical conclusion. The egg dropping puzzle is an
example of these logic puzzles.

Fig. 1. Illustration of the egg dropping puzzle
(medium.com/@parv51199/egg-drop-problem-using-dynamic-programming-

e22f67a1a7c3, accessed on May 10, 2021)

The egg dropping puzzle is a logical problem involving E
amount of eggs and a building with F number of floors. Suppose
that we wish to know which story in the F-story building that are
safe to drop an egg from, meaning that if the egg is dropped from
that story, the egg wouldn’t break when it lands on the ground.

The effect of the fall is the same for all eggs. It’s important to
note that if an egg breaks after being dropped from a certain
floor, then the egg will also break if dropped from floors higher
than that floor. Vice versa, if an egg doesn’t break after being
dropped from a certain floor, then the egg will also not break if
dropped from floors lower than that floor. A broken egg can’t be
used in another trial, but an egg that survives a fall can be reused
in another trial. The question is, with E amount of eggs, what is
the minimum number of egg droppings that is needed to
guarantee which floors are safe to drop eggs from. The question
asks for a guaranteed answer meaning that luck and probability
are not part of the answer and whether the egg breaks or not
when dropped ultimately doesn’t matter for the solution.

The solution to the egg dropping puzzle can be found in
many ways. One can simply use an algorithm to go through
every single possible iteration of the trials and then pick the one
with the lowest amount of egg drops. But this is inefficient as
the number of iterations increases massively with every
additional floor. The egg dropping puzzle is an optimization
problem, which means that optimization algorithms such as the
greedy algorithm can be used to reach the solution. But the
greedy algorithm is not reliable in reaching the optimal solution.
Dynamic programming in the other hand can reach the optimal
solution in an optimization problem like the egg dropping puzzle
much more reliably as it checks for more than one possible
solution.

II. THEORETICAL FRAMEWORK

A. Recursion

Recursion in computer science occurs when a function calls
upon itself during its execution. In other words, recursion is
when the function being defined is applied in its own definition
so that the function will call upon itself during the execution of
the function.

A function calling upon itself will create a loop. In order to
stop this loop, in every recursive function exist something called
a base case, a terminating scenario that does not use recursion to
produce an answer. The result of that base case will then be used
to produce results for cases that’s not the base through recursion.
A recursive case is a scenario that uses recursion to produce
results, meaning that it calls upon function being defined so that

mailto:medium.com/@parv51199/egg-drop-problem-using-dynamic-programming-e22f67a1a7c3
mailto:medium.com/@parv51199/egg-drop-problem-using-dynamic-programming-e22f67a1a7c3

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

a recursion occurs. A recursive function is made up of base cases
and recursive cases.

Recursion is used in many ways in computer science. It’s
used to create algorithms like depth-first search algorithms and
algorithms using dynamic programming. Recursion is useful for
breaking down complex problems into smaller simpler sub-
problems. However, recursion is generally not that efficient
when used without optimization methods. This is because
recursion can result in recalculating sub-problems that has been
solved and this incurs extra computation time that makes the
function inefficient.

B. Dynamic Programming

Dynamic programming is a method in mathematics and
computer science used to find and optimize solutions. Dynamic
programming refers to simplifying a complex problem into
simpler sub-problems in a recursive manner. Dynamic
programming breaks down the solution to the problem into a
group of stages so that the solution to the problem can be seen
as a series of interconnected decisions or solutions to the sub-
problems. It’s similar to the greedy algorithm as it also sees the
solution as a series of interconnected decisions. The difference
between greedy algorithms and dynamic programming is that in
dynamic programming, more than one series of decisions are
considered for the final solution.

As dynamic programming is an optimization method, the
series of interconnected decisions that we want to get is the one
that leads to the optimal solution. In order to get the optimal
solution, the principle of optimality is used. The principle of
optimality or Bellman’s principle of optimality states that if the
final solution is optimal, then parts of the solution leading to the
final solution is also optimal. This show that in order for
dynamic programming to get an optimal solution, the problem
needs to have an optimal substructure which means that the
optimal solution can be constructed from the optimal solution of
its sub-problems.

Fig. 2. Illustration of the principle of optimality
(informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-

2020-Bagian1.pdf, accessed on May 10, 2021)

On figure 2, it can be seen that the cost for stage k+1 is the
cost for stage k + cost from stage k to k+1. This means that to
get an optimal solution for stage k+1, the optimal solution for
stage k is also needed. This means that if we’re working to find
the optimal solution for stage k+1 from stage k, we can simply
use the optimal solution for stage k without redoing the
calculations. This is an example of the principle of optimality.

There are certain characteristics that show that a certain
problem can be solved with dynamic programming. By fulfilling

all seven of the characteristics, a problem can then be solved
using dynamic programming.

 The first characteristic is that the problem can be divided
into several stages and every stage can be solved with a single
decision.

The second characteristic is that every stage consists of
several states that is related to the stage. Usually the states of a
stage are all the possible inputs for that stage.

The third characteristic is that for every decision taken for
every state in a stage, the decision is then transformed to be used
by the next state in the next stage.

The fourth characteristic is that the cost of a stage increases
steadily with every additional stage. This is with the assumption
that every cost is positive and so with every additional stage, the
cost will only increase.

The fifth characteristic is that the cost of a stage is dependent
on the cost of previous stages and the cost from that stage to the
next one.

The sixth characteristic is that identifies the optimal solution
for every state in a stage so that the optimal solution for every
state in the next stage can be identified.

The seventh characteristic is that the principle of optimality
can be applied to the problem.

There are two approaches in solving problems through
dynamic programming. The first one is the top-down or forward
approach. In the top-down approach, the calculation starts from
the first stage and then continues until it reaches the end. The
second one is the bottom-up or backward approach. In the
bottom-up approach, the calculation starts from the last stage
and then proceeds backward until the first stage.

The general steps to develop an algorithm using dynamic
programming are usually the same for every algorithm. The first
of these general steps is to characterize the structure of the
optimal solution. This means to characterize the stages, states,
etc. The second step is to define recursively the optimal solution
to a stage by connecting the optimal solution of the previous
stage to the current one. The third step is to calculate the final
optimal solution using the forward or backward approach. In
order to not recalculate all the optimal solution for all stages and
states, the optimal solution for all stages and states are recorded
in a table so that further use of that optimal solution can simply
just use the value from the table so that it doesn’t need to
recalculate. The fourth step is an optional one which is to
reconstruct the final optimal solution so that it can be shown
clearly all the decisions taken in every stage.

C. Egg Dropping Puzzle

 Egg dropping puzzle involves E amount of eggs and a F-
story building and it asks what is the minimum amount of egg
dropping needed to guarantee which floors in the building are
safe to drop an egg from. There some rules to the puzzle. The
rules are:

1. The effect of a fall is the same for all eggs.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian1.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

2. An egg that breaks from a fall can’t be reused in
another trial.

3. An egg that survives a fall can be reused in another
trial.

4. If an egg breaks from a fall from a certain floor, the
egg will also break if dropped from a higher floor.

5. If an egg doesn’t break from a fall from a certain
floor, the egg will also not break if dropped from a
lower floor.

 The question of the puzzle can be reworded to finding out
the least amount of egg drops needed to determine the threshold
floor, namely the floor from which the egg breaks if dropped.
This means that the egg will break if dropped from the threshold
floor or higher and will not break if dropped from floors lower
than the threshold floor. By finding out the threshold floor, the
floors that are safe to drop an egg from will also be known, as
it’s all the floors below the threshold floor. It’s also important to
note that the focus of the question is the minimum number of
steps needed to guarantee which floor is the threshold floor, not
determining which floor is the threshold floor. Because of that,
the solution to the problem will not be affected by factors such
as the durability of the egg or the height of the building as it’s
purely a matter of logical reasoning.

III. IMPLEMENTATION OF DYNAMIC PROGRAMMING TO SOLVE

THE EGG DROPPING PUZZLE

In order to apply dynamic programming in solving the egg
dropping puzzle, first we must characterize the optimal structure
of the solution. For this example, we’ll go with the forward or
top-down approach. Then, we can identify that the stage for the
dynamic programming of the egg dropping puzzle is the process
of dropping an egg from a floor. We can also identify the states
of the stages to be the number of eggs.

After identifying the structure of the optimal solution, we
must identify the base cases and the recursive cases for the egg
dropping puzzle so that it can be solved recursively. In other
words, we must identify the recursive relation for the optimal
solution.

In order to find the base case, first we must look at the case
with only 0 or 1 number of floors. If the building has 0 floors,
that means we don’t need to do any trials at all so we get the
answer 0. If the building has 1 floor, then we only need to test
for the first floor meaning that the answer is 1.

The other base case is for every case with only 1 egg. With
only 1 egg, the worst-case scenario will always be that we need
to test for every single floor in order to find the threshold floor
as it’s possible that the egg doesn’t break when dropped from
the highest floor. As the puzzle asks for the answer that works
for every single case, that means we will always take the worst-
case scenario as the answer. This means that for every case that
has 1 egg and F number of floors, the answer will always be F.

In order to find the recursive case, we must take a look at
what happens if we drop an egg on a random X floor. There are
two possibilities, the first one is that the egg breaks, and the
second one is that egg doesn’t break. In the case where the egg

breaks, this means that the egg will also break for every single
floor higher than X. This means that all the floors above X
cannot be the threshold floor as the egg already breaks when
dropped from X. So, we only need to check for the floors lower
than X to see if X or the floors lower than it is the threshold floor.
It’s also important to note that the number of eggs decreases by
one as one egg is already broken from the first fall.

In the case where the egg doesn’t break, that means that X
and all the floors lower than it can’t be the threshold floor.
Therefore, we only need to check for the floors higher than X.
As the egg doesn’t break, this means that the egg can be reused
in further trials and the number of eggs doesn’t decrease.

As we are looking for the answer for all cases, that means we
have to look for the answer for worst-case scenario. This means
that out of the answers from the two possibilities, we have to
take the maximum one. This is done for every single possible
value of X which is in the range 1 to F. Of all the possible answer
for the worst-case scenario for every X, we want the answer with
the minimum value as the puzzles asks for the least amount of
trials. As we are doing an egg drop for every time we check
whether an egg breaks or not when dropped from X, we add 1 to
the answer every time we enter the recursive case.

Fig. 3. Recursive function for the egg dropping puzzle

 The recursive function for the egg dropping puzzle can be
found on Figure 3. The function eggDrop(e,f) has 3 base cases
and 1 recursive case. The 3 base cases are for the cases where
the number of floors is 0 or 1 and where the number of eggs is
1. Normally, we can simply solve the problem by using this
function in a recursive method, but there will be repetitive
function calls or the same function being recalculated multiple
times. This can be solved by solving the problem through
dynamic programming which is why the solving method is more
than just the recursive function.

 Now we can start calculating the optimal solution with
dynamic programming. For this example, we shall calculate the
value of eggDrop(3, 6) or the egg dropping puzzle with 3 eggs
and 8 floors. We can see the structure of the optimal solution
through the recursive function. We shall label the states as s and
the stages as k with the value of s = 2, 3 and k = 2, 3, 4, 5, 6.
There is no s = 1, k = 0, and k= 1 because they are all covered
by the base cases. First, we shall look at the base cases of the
recursion. From the base cases, we get the following tables.

s eggDrop(s, 0)

1 0

2 0

3 0

Fig. 4. Table for the case with 0 floor

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

s eggDrop(s,1)

1 1

2 1

3 1

Fig. 5. Table for the case with 1 floor

k eggDrop(1, k)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

Fig. 6. Table for the case with 1 egg

 After covering all the base cases, we can start calculating the
solution for stage k = 2. After covering all the base cases, we can
start calculating the solution for stage k = 2. The calculation for
eggDrop(s,k) will be by the recursive base as shown in Figure 3
with x = 1, 2.

s

max(eggDrop(s-1, x-1),
eggDrop(s, k-x))

min eggDrop(s,2)
x

1 2

2 1 1 1 2

3 1 1 1 2

Fig. 7. Table for stage k = 2

 As we can see, in calculating for the optimal solution for
stage k = 2, we’re using the optimal solution that was calculated
in the base cases. For example, the value of eggDrop(2,1) that
was used in Figure 7 is already calculated in Figure 5, therefore
no recalculation is done as we can simply take the value from
previous tables. This is the difference between solving the
problem with dynamic programming and solving the puzzle
with basic recursion. If we simply solve the problem with a
normal recursive function then a lot of recalculation will be done
and the algorithm will not be that efficient. The following tables
are the solution for k = 3, 4, 5, 6.

s

max(eggDrop(s-1, x-1),
eggDrop(s, k-x))

min eggDrop(s,3)
x

1 2 3

2 2 1 2 1 2

3 2 1 2 1 2

Fig. 8. Table for stage k = 3

s

max(eggDrop(s-1, x-1),
eggDrop(s, k-x))

min eggDrop(s,4)
x

1 2 3 4

2 2 2 2 3 2 3

3 2 2 2 2 2 3

Fig. 9. Table for stage k = 4

s

max(eggDrop(s-1, x-1),
eggDrop(s, k-x))

min eggDrop(s,5)
x

1 2 3 4 5

2 3 2 2 3 4 2 3

3 3 2 2 2 3 2 3

Fig. 10. Table for stage k = 5

s

max(eggDrop(s-1, x-1),
eggDrop(s, k-x))

min eggDrop(s,6)
X

1 2 3 4 5 6

2 3 3 2 3 4 5 2 3

3 3 3 2 2 3 3 2 3

Fig. 11. Table for stage k = 6

 As we can see in Figure 11, we get the value of eggDrop(3,6)
as 3. This means for the egg dropping puzzle with 3 eggs and 6
floors, the optimal solution is 3 moves. In other words, the
threshold floor of the building can be determined with 3 moves
or less. As the puzzle is solved using dynamic programming,
then all the optimal solutions for every combination of amount
of eggs and floors that was calculated before eggDrop(3,6) is
also stored inside the tables. Although some of those answers are
not used in calculating eggDrop(3,6), they may be used if we
ever want to extend the stages to solve the egg dropping puzzle
with a different number of eggs and floors. Ultimately, using
dynamic programming allows us to not repeat calculations that
have been done so that the algorithm is more efficient and so
more time will be saved.

 The solution to the egg dropping puzzle using dynamic
programming can be confirmed by solving the problem using
logical deduction. With 6 floors, pick the 3rd floor to drop an egg
from. If the egg breaks then the threshold floor is between the 1st
and the 3rd floor. The worst-case scenario would then be needing
to check both the 1st floor and the 2nd floor with the egg not

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

breaking when dropped on the 1st floor therefore needing a third
try. So, the minimum number of trials for that scenario is 3. If
the egg doesn’t break when dropped from the 3rd floor, then the
threshold floor is between the 4th floor and the 6th floor. Drop the
egg on the 5th, if it breaks then check the 4th floor, if it doesn’t
break then check the 6th floor. So, the minimum number of trials
in this scenario is also 3. It’s impossible to get a solution lower
than 3 for the egg dropping puzzle with 3 eggs and 6 floors so
we can say the using dynamic programming we have
successfully found the optimal solution for the egg dropping
puzzle. Of course, the method above can also be used to solve
the egg dropping puzzle with a different amount of eggs and
floors. Therefore, we can say that dynamic programming can be
used to solve the egg dropping puzzle effectively.

IV. IMPLEMENTATION OF SOLVER USING PYTHON

The following is the implementation of dynamic
programming to solve the egg dropping puzzle using the
programming language Python. The solver program using
Python is created following the same steps that can be seen on
the previous chapter.

 First, we need to prepare the table of optimal solution for
every single combination of eggs and floors. This allows the
program to simply reuse the optimal solutions of previous stages
without needing to recalculate anything. Then, we need to fill
the table with the base cases. The base cases are for when the
number of eggs is equal to 1 and when the number of floors is
equal to 0 or 1. This is achieved through the Python function in
Figure 12.

Fig. 12. Python function to create the table of optimal solutions and fill it
with the base cases

As we can see in Figure 12, the Python function
makeEggDropArray(e,f) receives the variable e and f with e
being the number of eggs and f being the number of floors. A
matrix is created with the initial values of -1 so that we can tell
that an index of matrix has not been filled yet. Then we fill the
matrix with the values got from the base cases as shown in
Figure 3.

After we create the table of optimal solutions, then we can
start calculating the optimal solution through dynamic
programming. For this example, we are using the forward or top-
down approach. The python function to solve the egg dropping
puzzle can be seen in Figure 13.

Fig. 13. Python function to solve the egg dropping puzzle

The Python function eggDrop(e,f,arrEggDrop) receives the
variable e, f, and arrEggDrop with e being the number of eggs, f
being the number of floors, and arrEggDrop being the table of
optimal solution. First, the function will check whether the
solution is already in the table of optimal solutions or not. If the
solution already exists in the table, then the function will simply
return the solution that is in the table so that it doesn’t need to
recalculate. If the solution doesn’t exist yet, then it will calculate
the optimal solution through the recursive base shown in Figure
3. After finding the optimal solution, then the function will store
the answer in the table of optimal solutions and then returning
the answer. The eggDrop function is a recursive function that
will only calculate the optimal solution if the optimal solution
hasn’t already been calculated, reducing the number of times
needed to recalculate solutions that has already been calculated.
The Python function solveEggDrop(e,f) is a function made to
combine the makeEggDropArray function and the eggDrop
function so that we only need to call the solveEggDrop function.
In order to use this Python function to solve the egg dropping
puzzle, a simple main program is made with command-line
input. This main program is shown in Figure 14.

Fig. 14. Main program for egg dropping puzzle solver with Python

 The main program for the solver is a program that receives a
command-line input for the amount of eggs and floors. Then, it
will call upon the solveEggDrop(e,f) function with e and f being
the number of eggs dan floors that have been inputted through
the command-line. After getting the optimal solution through the
solveEggDrop function, the main program then prints out the
solution in a sentence to the command-line.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

 The following are examples of the output of the main
program of the egg dropping puzzle solver in Python as shown
in Figure 15 and Figure 16.

Fig. 15. Output examples of the main program

 As shown Figure 15, the output of the solver for the egg
dropping puzzle with 3 eggs and 6 floors is 3 trials. This is the
same result that we got in the previous chapter as shown in
Figure 11. Furthermore, we can also see that the results that we
got for the egg dropping problem for 2 eggs with 6 floors and 2
eggs with 3 floors are 3 trials and 2 trials. We can check this with
the result that we got in Figure 8 and Figure 11. Therefore, we
can safely say that the solver has successfully implemented the
algorithm to solve the egg dropping puzzle with dynamic
programming.

Fig. 16. More output examples of the main program

 In Figure 16, we can see that the solver also works well for
cases with a huge number of floors with numbers reaching 500
in the test case.

V. CONCLUSION

 In conclusion, dynamic programming is an effective method
to solve optimization problems. Not only that, dynamic
programming is also an efficient method compared to other
similar methods as it prevents recalculation of previously solved
problems to reduce processing time. One of the applications of
dynamic programming as seen in this paper is to solve logic
puzzles such as the egg dropping puzzle. As shown in this paper,
dynamic programming can be used as a method to find the
minimum amount of egg droppings needed to guarantee which
floors in a building are safe for an egg to be dropped from with

certain amount of eggs and floors in a building. Therefore, the
egg dropping puzzle can be solved using dynamic programming
with the methods shown in this paper.

 Dynamic programming has many uses beyond solving logic
puzzles. There are many algorithms in the world today that uses
dynamic programming. The author hopes that in the future more
people will use methods such as dynamic programming to create
more effective and efficient algorithms to solve all kinds of
problems.

VIDEO LINK AT YOUTUBE

The following is a link to a Youtube video the author made
to further explain solving the egg dropping puzzle using
dynamic programming: https://youtu.be/EbQFTXGl1NU

ACKNOWLEDGMENT

The author would like to thank all the lecturers for the
IF2211 Strategi Algoritma class who have taught and provided
the author with the knowledge in algorithm strategies especially
dynamic programming needed to write this paper.

REFERENCES

[1] Munir, Rinaldi, informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Program-Dinamis-2020-Bagian1.pdf, accessed on May 10, 2021

[2] Munir, Rinaldi, informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Program-Dinamis-2020-Bagian2.pdf, accessed on May 10, 2021

[3] Parv, Parikh, Egg Drop Problem Using Dynamic Programming,
medium.com/@parv51199/egg-drop-problem-using-dynamic-
programming-e22f67a1a7c3, accessed on May 10, 2021

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2021

Girvin Junod 13519096

https://youtu.be/EbQFTXGl1NU
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian2.pdf
mailto:medium.com/@parv51199/egg-drop-problem-using-dynamic-programming-e22f67a1a7c3
mailto:medium.com/@parv51199/egg-drop-problem-using-dynamic-programming-e22f67a1a7c3

