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Abstract—The Egg Dropping Puzzle is a puzzle that involves 

eggs and a building with multiple floors. The puzzle asks how 

many acts of egg dropping is required to get a guaranteed answer 

on which floors on the building are safe to drop an egg from. This 

puzzle can be solved using dynamic programming. Dynamic 

programming is a method to solve problems by breaking down the 

solution to the problem into a group of stages so that the solution 

to the problem is a series of interconnected decisions to the sub-

problems. Dynamic programming is as a method usually used to 

solve optimization problems. This paper discusses the application 

of dynamic programming to solve the egg dropping puzzle. 
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I.  INTRODUCTION 

There are many types of puzzles. One type of puzzles is 
known as logic puzzles. They are called logic puzzles because 
they are derived from mathematical deductions. This means that 
the solution to the puzzle requires using deductive reasoning to 
reach a logical conclusion. The egg dropping puzzle is an 
example of these logic puzzles. 

 

Fig. 1. Illustration of the egg dropping puzzle 
(medium.com/@parv51199/egg-drop-problem-using-dynamic-programming-

e22f67a1a7c3, accessed on May 10, 2021) 

The egg dropping puzzle is a logical problem involving E 
amount of eggs and a building with F number of floors. Suppose 
that we wish to know which story in the F-story building that are 
safe to drop an egg from, meaning that if the egg is dropped from 
that story, the egg wouldn’t break when it lands on the ground. 

The effect of the fall is the same for all eggs. It’s important to 
note that if an egg breaks after being dropped from a certain 
floor, then the egg will also break if dropped from floors higher 
than that floor. Vice versa, if an egg doesn’t break after being 
dropped from a certain floor, then the egg will also not break if 
dropped from floors lower than that floor. A broken egg can’t be 
used in another trial, but an egg that survives a fall can be reused 
in another trial. The question is, with E amount of eggs, what is 
the minimum number of egg droppings that is needed to 
guarantee which floors are safe to drop eggs from. The question 
asks for a guaranteed answer meaning that luck and probability 
are not part of the answer and whether the egg breaks or not 
when dropped ultimately doesn’t matter for the solution. 

The solution to the egg dropping puzzle can be found in 
many ways. One can simply use an algorithm to go through 
every single possible iteration of the trials and then pick the one 
with the lowest amount of egg drops. But this is inefficient as 
the number of iterations increases massively with every 
additional floor. The egg dropping puzzle is an optimization 
problem, which means that optimization algorithms such as the 
greedy algorithm can be used to reach the solution. But the 
greedy algorithm is not reliable in reaching the optimal solution. 
Dynamic programming in the other hand can reach the optimal 
solution in an optimization problem like the egg dropping puzzle 
much more reliably as it checks for more than one possible 
solution. 

II. THEORETICAL FRAMEWORK 

A. Recursion 

Recursion in computer science occurs when a function calls 
upon itself during its execution. In other words, recursion is 
when the function being defined is applied in its own definition 
so that the function will call upon itself during the execution of 
the function. 

A function calling upon itself will create a loop. In order to 
stop this loop, in every recursive function exist something called 
a base case, a terminating scenario that does not use recursion to 
produce an answer. The result of that base case will then be used 
to produce results for cases that’s not the base through recursion. 
A recursive case is a scenario that uses recursion to produce 
results, meaning that it calls upon function being defined so that 
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a recursion occurs. A recursive function is made up of base cases 
and recursive cases.  

Recursion is used in many ways in computer science. It’s 
used to create algorithms like depth-first search algorithms and 
algorithms using dynamic programming. Recursion is useful for 
breaking down complex problems into smaller simpler sub-
problems. However, recursion is generally not that efficient 
when used without optimization methods. This is because 
recursion can result in recalculating sub-problems that has been 
solved and this incurs extra computation time that makes the 
function inefficient. 

B. Dynamic Programming 

Dynamic programming is a method in mathematics and 
computer science used to find and optimize solutions. Dynamic 
programming refers to simplifying a complex problem into 
simpler sub-problems in a recursive manner. Dynamic 
programming breaks down the solution to the problem into a 
group of stages so that the solution to the problem can be seen 
as a series of interconnected decisions or solutions to the sub-
problems. It’s similar to the greedy algorithm as it also sees the 
solution as a series of interconnected decisions. The difference 
between greedy algorithms and dynamic programming is that in 
dynamic programming, more than one series of decisions are 
considered for the final solution. 

As dynamic programming is an optimization method, the 
series of interconnected decisions that we want to get is the one 
that leads to the optimal solution. In order to get the optimal 
solution, the principle of optimality is used. The principle of 
optimality or Bellman’s principle of optimality states that if the 
final solution is optimal, then parts of the solution leading to the 
final solution is also optimal. This show that in order for 
dynamic programming to get an optimal solution, the problem 
needs to have an optimal substructure which means that the 
optimal solution can be constructed from the optimal solution of 
its sub-problems. 

 

Fig. 2. Illustration of the principle of optimality 
(informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-

2020-Bagian1.pdf, accessed on May 10, 2021)  

On figure 2, it can be seen that the cost for stage k+1 is the 
cost for stage k + cost from stage k to k+1. This means that to 
get an optimal solution for stage k+1, the optimal solution for 
stage k is also needed. This means that if we’re working to find 
the optimal solution for stage k+1 from stage k, we can simply 
use the optimal solution for stage k without redoing the 
calculations. This is an example of the principle of optimality. 

There are certain characteristics that show that a certain 
problem can be solved with dynamic programming. By fulfilling 

all seven of the characteristics, a problem can then be solved 
using dynamic programming. 

 The first characteristic is that the problem can be divided 
into several stages and every stage can be solved with a single 
decision.  

The second characteristic is that every stage consists of 
several states that is related to the stage. Usually the states of a 
stage are all the possible inputs for that stage. 

The third characteristic is that for every decision taken for 
every state in a stage, the decision is then transformed to be used 
by the next state in the next stage.  

The fourth characteristic is that the cost of a stage increases 
steadily with every additional stage. This is with the assumption 
that every cost is positive and so with every additional stage, the 
cost will only increase. 

The fifth characteristic is that the cost of a stage is dependent 
on the cost of previous stages and the cost from that stage to the 
next one. 

The sixth characteristic is that identifies the optimal solution 
for every state in a stage so that the optimal solution for every 
state in the next stage can be identified. 

The seventh characteristic is that the principle of optimality 
can be applied to the problem.  

There are two approaches in solving problems through 
dynamic programming. The first one is the top-down or forward 
approach. In the top-down approach, the calculation starts from 
the first stage and then continues until it reaches the end. The 
second one is the bottom-up or backward approach. In the 
bottom-up approach, the calculation starts from the last stage 
and then proceeds backward until the first stage. 

The general steps to develop an algorithm using dynamic 
programming are usually the same for every algorithm. The first 
of these general steps is to characterize the structure of the 
optimal solution. This means to characterize the stages, states, 
etc. The second step is to define recursively the optimal solution 
to a stage by connecting the optimal solution of the previous 
stage to the current one. The third step is to calculate the final 
optimal solution using the forward or backward approach. In 
order to not recalculate all the optimal solution for all stages and 
states, the optimal solution for all stages and states are recorded 
in a table so that further use of that optimal solution can simply 
just use the value from the table so that it doesn’t need to 
recalculate. The fourth step is an optional one which is to 
reconstruct the final optimal solution so that it can be shown 
clearly all the decisions taken in every stage. 

C. Egg Dropping Puzzle 

 Egg dropping puzzle involves E amount of eggs and a F-
story building and it asks what is the minimum amount of egg 
dropping needed to guarantee which floors in the building are 
safe to drop an egg from. There some rules to the puzzle. The 
rules are: 

1. The effect of a fall is the same for all eggs. 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian1.pdf
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2. An egg that breaks from a fall can’t be reused in 
another trial. 

3. An egg that survives a fall can be reused in another 
trial. 

4. If an egg breaks from a fall from a certain floor, the 
egg will also break if dropped from a higher floor. 

5. If an egg doesn’t break from a fall from a certain 
floor, the egg will also not break if dropped from a 
lower floor. 

 The question of the puzzle can be reworded to finding out 
the least amount of egg drops needed to determine the threshold 
floor, namely the floor from which the egg breaks if dropped. 
This means that the egg will break if dropped from the threshold 
floor or higher and will not break if dropped from floors lower 
than the threshold floor. By finding out the threshold floor, the 
floors that are safe to drop an egg from will also be known, as 
it’s all the floors below the threshold floor. It’s also important to 
note that the focus of the question is the minimum number of 
steps needed to guarantee which floor is the threshold floor, not 
determining which floor is the threshold floor. Because of that, 
the solution to the problem will not be affected by factors such 
as the durability of the egg or the height of the building as it’s 
purely a matter of logical reasoning. 

III. IMPLEMENTATION OF DYNAMIC PROGRAMMING TO SOLVE 

THE EGG DROPPING PUZZLE 

In order to apply dynamic programming in solving the egg 
dropping puzzle, first we must characterize the optimal structure 
of the solution. For this example, we’ll go with the forward or 
top-down approach. Then, we can identify that the stage for the 
dynamic programming of the egg dropping puzzle is the process 
of dropping an egg from a floor. We can also identify the states 
of the stages to be the number of eggs. 

After identifying the structure of the optimal solution, we 
must identify the base cases and the recursive cases for the egg 
dropping puzzle so that it can be solved recursively. In other 
words, we must identify the recursive relation for the optimal 
solution. 

In order to find the base case, first we must look at the case 
with only 0 or 1 number of floors. If the building has 0 floors, 
that means we don’t need to do any trials at all so we get the 
answer 0. If the building has 1 floor, then we only need to test 
for the first floor meaning that the answer is 1. 

The other base case is for every case with only 1 egg. With 
only 1 egg, the worst-case scenario will always be that we need 
to test for every single floor in order to find the threshold floor 
as it’s possible that the egg doesn’t break when dropped from 
the highest floor. As the puzzle asks for the answer that works 
for every single case, that means we will always take the worst-
case scenario as the answer. This means that for every case that 
has 1 egg and F number of floors, the answer will always be F. 

In order to find the recursive case, we must take a look at 
what happens if we drop an egg on a random X floor. There are 
two possibilities, the first one is that the egg breaks, and the 
second one is that egg doesn’t break. In the case where the egg 

breaks, this means that the egg will also break for every single 
floor higher than X. This means that all the floors above X 
cannot be the threshold floor as the egg already breaks when 
dropped from X. So, we only need to check for the floors lower 
than X to see if X or the floors lower than it is the threshold floor. 
It’s also important to note that the number of eggs decreases by 
one as one egg is already broken from the first fall. 

In the case where the egg doesn’t break, that means that X 
and all the floors lower than it can’t be the threshold floor. 
Therefore, we only need to check for the floors higher than X. 
As the egg doesn’t break, this means that the egg can be reused 
in further trials and the number of eggs doesn’t decrease. 

As we are looking for the answer for all cases, that means we 
have to look for the answer for worst-case scenario. This means 
that out of the answers from the two possibilities, we have to 
take the maximum one. This is done for every single possible 
value of X which is in the range 1 to F. Of all the possible answer 
for the worst-case scenario for every X, we want the answer with 
the minimum value as the puzzles asks for the least amount of 
trials. As we are doing an egg drop for every time we check 
whether an egg breaks or not when dropped from X, we add 1 to 
the answer every time we enter the recursive case. 

 

 

 

Fig. 3. Recursive function for the egg dropping puzzle 

 The recursive function for the egg dropping puzzle can be 
found on Figure 3. The function eggDrop(e,f) has 3 base cases 
and 1 recursive case. The 3 base cases are for the cases where 
the number of floors is 0 or 1 and where the number of eggs is 
1. Normally, we can simply solve the problem by using this 
function in a recursive method, but there will be repetitive 
function calls or the same function being recalculated multiple 
times. This can be solved by solving the problem through 
dynamic programming which is why the solving method is more 
than just the recursive function. 

 Now we can start calculating the optimal solution with 
dynamic programming. For this example, we shall calculate the 
value of eggDrop(3, 6) or the egg dropping puzzle with 3 eggs 
and 8 floors. We can see the structure of the optimal solution 
through the recursive function. We shall label the states as s and 
the stages as k with the value of s = 2, 3 and k = 2, 3, 4, 5, 6. 
There is no s = 1, k = 0, and k= 1 because they are all covered 
by the base cases. First, we shall look at the base cases of the 
recursion. From the base cases, we get the following tables. 

s eggDrop(s, 0) 

1 0 

2 0 

3 0 

Fig. 4. Table for the case with 0 floor 
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s eggDrop(s,1) 

1 1 

2 1 

3 1 

Fig. 5. Table for the case with 1 floor 

 

k eggDrop(1, k) 

0 0 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

Fig. 6. Table for the case with 1 egg 

 After covering all the base cases, we can start calculating the 
solution for stage k = 2. After covering all the base cases, we can 
start calculating the solution for stage k = 2. The calculation for 
eggDrop(s,k) will be by the recursive base as shown in Figure 3 
with x = 1, 2. 

s 

max(eggDrop(s-1, x-1), 
eggDrop(s, k-x)) 

min eggDrop(s,2) 
x 

1 2 

2 1 1 1 2 

3 1 1 1 2 

Fig. 7. Table for stage k = 2 

 As we can see, in calculating for the optimal solution for 
stage k = 2, we’re using the optimal solution that was calculated 
in the base cases. For example, the value of eggDrop(2,1) that 
was used in Figure 7 is already calculated in Figure 5, therefore 
no recalculation is done as we can simply take the value from 
previous tables. This is the difference between solving the 
problem with dynamic programming and solving the puzzle 
with basic recursion. If we simply solve the problem with a 
normal recursive function then a lot of recalculation will be done 
and the algorithm will not be that efficient. The following tables 
are the solution for k = 3, 4, 5, 6. 

s 

max(eggDrop(s-1, x-1), 
eggDrop(s, k-x)) 

min eggDrop(s,3) 
x 

1 2 3 

2 2 1 2 1 2 

3 2 1 2 1 2 

Fig. 8. Table for stage k = 3 

 

s 

max(eggDrop(s-1, x-1), 
eggDrop(s, k-x)) 

min eggDrop(s,4) 
x 

1 2 3 4 

2 2 2 2 3 2 3 

3 2 2 2 2 2 3 

Fig. 9. Table for stage k = 4 

 

s 

max(eggDrop(s-1, x-1), 
eggDrop(s, k-x)) 

min eggDrop(s,5) 
x 

1 2 3 4 5 

2 3 2 2 3 4 2 3 

3 3 2 2 2 3 2 3 

Fig. 10. Table for stage k = 5 

 

s 

max(eggDrop(s-1, x-1), 
eggDrop(s, k-x)) 

min eggDrop(s,6) 
X 

1 2 3 4 5 6 

2 3 3 2 3 4 5 2 3 

3 3 3 2 2 3 3 2 3 

Fig. 11. Table for stage k = 6 

 As we can see in Figure 11, we get the value of eggDrop(3,6) 
as 3. This means for the egg dropping puzzle with 3 eggs and 6 
floors, the optimal solution is 3 moves. In other words, the 
threshold floor of the building can be determined with 3 moves 
or less. As the puzzle is solved using dynamic programming, 
then all the optimal solutions for every combination of amount 
of eggs and floors that was calculated before eggDrop(3,6) is 
also stored inside the tables. Although some of those answers are 
not used in calculating eggDrop(3,6), they may be used if we 
ever want to extend the stages to solve the egg dropping puzzle 
with a different number of eggs and floors. Ultimately, using 
dynamic programming allows us to not repeat calculations that 
have been done so that the algorithm is more efficient  and so 
more time will be saved. 

 The solution to the egg dropping puzzle using dynamic 
programming can be confirmed by solving the problem using 
logical deduction. With 6 floors, pick the 3rd floor to drop an egg 
from. If the egg breaks then the threshold floor is between the 1st 
and the 3rd floor. The worst-case scenario would then be needing 
to check both the 1st floor and the 2nd floor with the egg not 
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breaking when dropped on the 1st floor therefore needing a third 
try. So, the minimum number of trials for that scenario is 3. If 
the egg doesn’t break when dropped from the 3rd floor, then the 
threshold floor is between the 4th floor and the 6th floor. Drop the 
egg on the 5th, if it breaks then check the 4th floor, if it doesn’t 
break then check the 6th floor. So, the minimum number of trials 
in this scenario is also 3. It’s impossible to get a solution lower 
than 3 for the egg dropping puzzle with 3 eggs and 6 floors so 
we can say the using dynamic programming we have 
successfully found the optimal solution for the egg dropping 
puzzle. Of course, the method above can also be used to solve 
the egg dropping puzzle with a different amount of eggs and 
floors. Therefore, we can say that dynamic programming can be 
used to solve the egg dropping puzzle effectively. 

IV. IMPLEMENTATION OF SOLVER USING PYTHON 

The following is the implementation of dynamic 
programming to solve the egg dropping puzzle using the 
programming language Python. The solver program using 
Python is created following the same steps that can be seen on 
the previous chapter. 

 First, we need to prepare the table of optimal solution for 
every single combination of eggs and floors. This allows the 
program to simply reuse the optimal solutions of previous stages 
without needing to recalculate anything. Then, we need to fill 
the table with the base cases. The base cases are for when the 
number of eggs is equal to 1 and when the number of floors is 
equal to 0 or 1. This is achieved through the Python function in 
Figure 12. 

 

Fig. 12. Python function to create the table of optimal solutions and fill it 
with the base cases 

As we can see in Figure 12, the Python function 
makeEggDropArray(e,f) receives the variable e and f with e 
being the number of eggs and f being the number of floors. A 
matrix is created with the initial values of -1 so that we can tell 
that an index of matrix has not been filled yet. Then we fill the 
matrix with the values got from the base cases as shown in 
Figure 3. 

After we create the table of optimal solutions, then we can 
start calculating the optimal solution through dynamic 
programming. For this example, we are using the forward or top-
down approach. The python function to solve the egg dropping 
puzzle can be seen in Figure 13. 

 

Fig. 13. Python function to solve the egg dropping puzzle 

The Python function eggDrop(e,f,arrEggDrop) receives the 
variable e, f, and arrEggDrop with e being the number of eggs, f 
being the number of floors, and arrEggDrop being the table of 
optimal solution. First, the function will check whether the 
solution is already in the table of optimal solutions or not. If the 
solution already exists in the table, then the function will simply 
return the solution that is in the table so that it doesn’t need to 
recalculate. If the solution doesn’t exist yet, then it will calculate 
the optimal solution through the recursive base shown in Figure 
3. After finding the optimal solution, then the function will store 
the answer in the table of optimal solutions and then returning 
the answer. The eggDrop function is a recursive function that 
will only calculate the optimal solution if the optimal solution 
hasn’t already been calculated, reducing the number of times 
needed to recalculate solutions that has already been calculated. 
The Python function solveEggDrop(e,f) is a function made to 
combine the makeEggDropArray function and the eggDrop 
function so that we only need to call the solveEggDrop function. 
In order to use this Python function to solve the egg dropping 
puzzle, a simple main program is made with command-line 
input. This main program is shown in Figure 14. 

 

Fig. 14. Main program for egg dropping puzzle solver with Python 

 The main program for the solver is a program that receives a 
command-line input for the amount of eggs and floors. Then, it 
will call upon the solveEggDrop(e,f) function with e and f being 
the number of eggs dan floors that have been inputted through 
the command-line. After getting the optimal solution through the 
solveEggDrop function, the main program then prints out the 
solution in a sentence to the command-line. 
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 The following are examples of the output of the main 
program of the egg dropping puzzle solver in Python as shown 
in Figure 15 and Figure 16.  

 

Fig. 15. Output examples of the main program 

 As shown Figure 15, the output of the solver for the egg 
dropping puzzle with 3 eggs and 6 floors is 3 trials. This is the 
same result that we got in the previous chapter as shown in 
Figure 11. Furthermore, we can also see that the results that we 
got for the egg dropping problem for 2 eggs with 6 floors and 2 
eggs with 3 floors are 3 trials and 2 trials. We can check this with 
the result that we got in Figure 8 and Figure 11. Therefore, we 
can safely say that the solver has successfully implemented the 
algorithm to solve the egg dropping puzzle with dynamic 
programming.  

  

Fig. 16. More output examples of the main program 

 In Figure 16, we can see that the solver also works well for 
cases with a huge number of floors with numbers reaching 500 
in the test case. 

V. CONCLUSION 

 In conclusion, dynamic programming is an effective method 
to solve optimization problems. Not only that, dynamic 
programming is also an efficient method compared to other 
similar methods as it prevents recalculation of previously solved 
problems to reduce processing time. One of the applications of 
dynamic programming as seen in this paper is to solve logic 
puzzles such as the egg dropping puzzle. As shown in this paper, 
dynamic programming can be used as a method to find the 
minimum amount of egg droppings needed to guarantee which 
floors in a building are safe for an egg to be dropped from with 

certain amount of eggs and floors in a building. Therefore, the 
egg dropping puzzle can be solved using dynamic programming 
with the methods shown in this paper. 

 Dynamic programming has many uses beyond solving logic 
puzzles. There are many algorithms in the world today that uses 
dynamic programming. The author hopes that in the future more 
people will use methods such as dynamic programming to create 
more effective and efficient algorithms to solve all kinds of 
problems. 

VIDEO LINK AT YOUTUBE 

The following is a link to a Youtube video the author made 
to further explain solving the egg dropping puzzle using 
dynamic programming: https://youtu.be/EbQFTXGl1NU 
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